Laboranalysen

Das wichtigste Instrument zum Nachweis von Kontaminationen

Fulda, 24. Oktober 2025

- ROLLE DER ANALYTISCHEN LABORE
- ANALYTISCHE METHODEN
 Beschreibung
 Herausforderungen
- ERGEBNISINTERPRETATION
- **AUSWAHLKRITERIEN FÜR LABORSERVICE**

ROLLE VON LABOREN

AUFKLÄRUNG VERDÄCHTIGER FÄLLE

Die Prüfung auf nicht zugelassene Betriebsstoffe liefert Informationen zur Prozessqualität.

VERIFIZIERUNG VERDÄCHTIGER FÄLLE

Analysen auf SPEZIFISCHE Substanzen bestätigen oder widerlegen Verdachtsfälle.

ANLEITUNG ZUR PROBENAHME

Schulungen, Probenahmeprotokolle usw. gewährleisten die Verwendbarkeit der Analysenergebnisse.

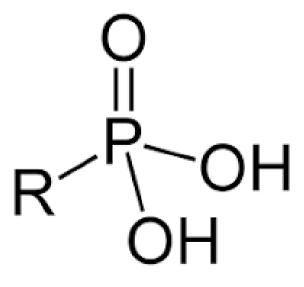
INTERPRETATIONS-SUPPORT

Kommunikation über substanzspezifische Eigenschaften, statistische Häufigkeiten, bestätigte Spuren von Relevanz, etc.

ROLLE VON LABOREN

AUFKLÄRUNG VERDÄCHTIGER FÄLLE

Die Prüfung auf nicht zugelassene Betriebsstoffe liefert Informationen zur Prozessqualität.


Bio-Ingwer

Aufbereitung von organischem Dünger

BEISPIEL:

Phosphonsäure im Hühnermist und in Zusatzstoffen

ROLLE VON LABOREN

VERIFIZIERUNG VERDÄCHTIGER FÄLLE

Analysen auf SPEZIFISCHE Substanzen bestätigen oder widerlegen Verdachtsfälle.

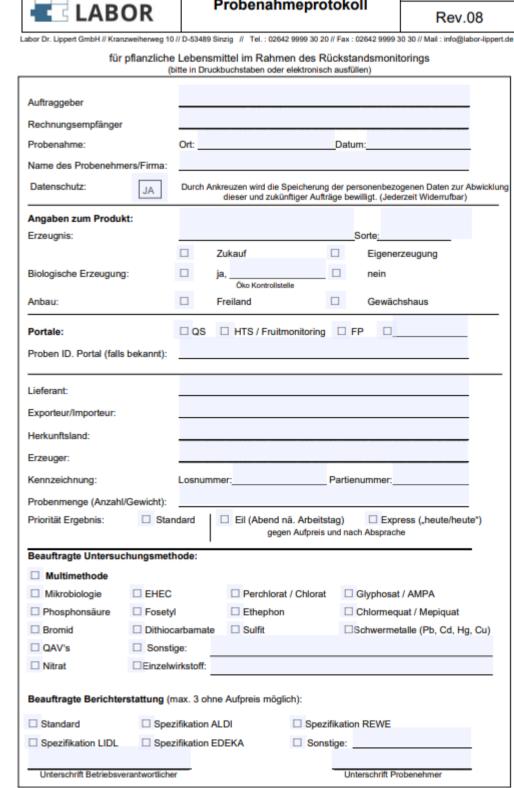
Auditiertes Ingwerfeld (China)

BEISPIEL:

Diuron in Bio-Ingwer

Fund einer Verpackung von Diuron (Herbizid)

ROLLE VON LABOREN



ANLEITUNG ZUR PROBENAHME

Schulungen, Probenahmeprotokolle usw. gewährleisten die Verwendbarkeit der Analysenergebnisse.

Authorisierte Hilfsmittel

Probenahmeprotokoll

53489 Sinzig Tel. 02642 - 9999 30 20

Leitfaden Probenversand Lebensmittel

Kundeninformation

Um Verzögerungen beim Start der Analysen zu vermeiden und zusätzlichen Aufwand zu minimieren, füllen Sie bitte das Probennahmeprotokoll sorgfältig aus und legen dies in gedruckter Form der Probe bei. Unvollständige Angaben, unzureichendes Probenmaterial oder beschädigte Proben können die Bearbeitung stark verzögern.

Angaben im Auftragsformular

- · Kontakt- und Rechnungsinformationen (für den digitalen Versand Ihrer Ergebnisse).
- · Gewünschten Untersuchungsumfang ankreuzen/eintragen
 - Bei Mischproben; sollen die Komponenten einzeln oder als Mischprobe untersucht werden?
- · Produktinformationen, wie sie im Analysebericht aufgeführt werden sollen (z. B. Chargennummer, GGN,
- - Express (am gleichen Arbeitstag des Probeneingangs im Labor)
 - Eil (nächster Arbeitstag nach Probeneingang im Labor)
- Standard (2-3 Arbeitstage nach Probeneingang im Labor)

Menge des Probenmaterials

- Für chemische Analysen stellen Sie bitte mindestens 1.000 g Material bereit. Auch die Lieferung in mehreren Einheiten ist möglich. Bei Kräutern oder getrockneten Pilzen bitte min. 100 g bereitstellen.
- . Für mikrobiologische Analysen benötigen wir mindestens 100 g Material.

Kennzeichnung und Organisation der Proben

· besteht eine Probe aus mehreren Teilen, versehen Sie diese bitte mit der gleichen Nummer, damit die Zuordnung klar bleibt. Gerade bei ähnlichen Proben ist eine eindeutige Zuordnung sehr wichtig (z.B. mehrere Packungen Kartoffeln)

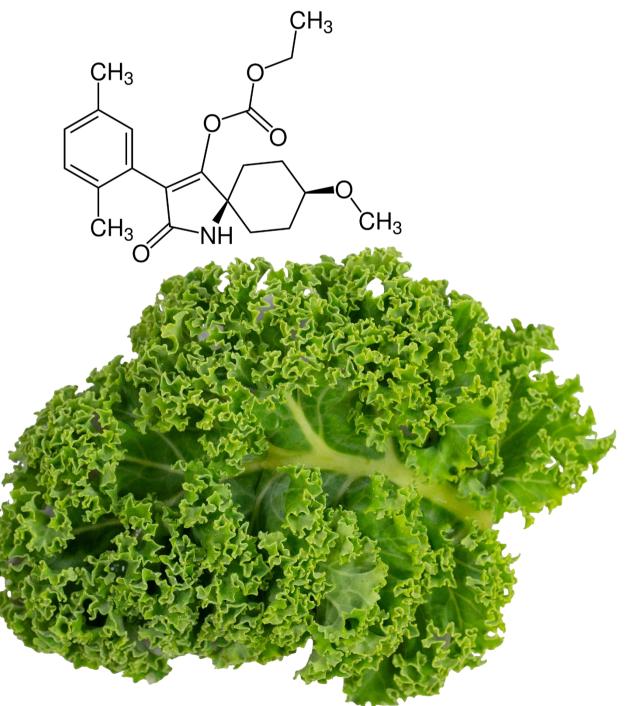
- . Bitte Probenmaterial nicht unverpackt z.B. in einem Karton transportieren. Auch diese können behandelt sein und das Probenmaterial kontaminieren. Einfache Plastiktüten können dies vermeiden
- . Empfindliche oder zerbrechliche Proben, wie z.B. Himbeeren oder Glasflaschen, sollten ausreichend geschützt/gepolstert werden, um Beschädigungen während des Transports zu vermeiden.
- · Für Proben, die kühl gehalten werden müssen, verwenden Sie am besten isolierende Verpackungen, wie Styroporboxen und Kühlakkus.

Versand und Zustellung

- Unsere Annahmezeiten sind Montag bis Freitag von 8:00–17:30 Uhr. Bei Lieferungen nach 14:00 Uhr kann eine Bearbeitung am gleichen Tag nicht garantiert werden.
- Beachten Sie, dass der letzte Versandtag der Woche mit einem Expressversanddienst Donnerstag ist. Samstags können wir keine Proben annehmen.
- . In räumlicher Nähe unseres Standortes ist eine morgendliche Abholung mit unserem Fahrdienst und Anlieferung am Tag der Abholung möglich
- Zur Beauftragung einer Abholung rufen Sie bitte bei uns an oder schreiben eine E-Mail (s.u.)
- · Für mikrobiologische Tests sollten die Proben innerhalb von 24 Stunden nach Entnahme bei uns

Probenahmeprotokoll

Leitfaden zum Probenversand


INTERPRETATIONS-SUPPORT

Kommunikation über substanzspezifische Eigenschaften, statistische Häufigkeiten, bestätigte Spuren von Relevanz, etc.

BEISPIEL:

Spirotetramat

Movento in Grünkohl

ROLLE VON LABOREN

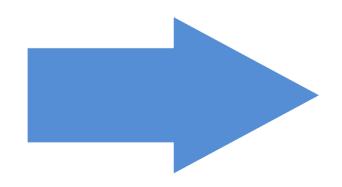
Metaboliten von Spirotetramat	Ergebnis (mg/kg)
Spirotetramat	0,228
Spirotetramat BYI08330- enol	0,728
Spirotetramat BYI08330- ketohydroxy	0,038
Spirotetramat BYI08330- monohydroxy	-
Spirotetramat BYI08330- enol-glucosid	0,071

ROLLE VON LABOREN

AUFKLÄRUNG VERDÄCHTIGER FÄLLE VERDÄCHTIGER FÄLLE

Die Prüfung auf nicht zugelassene Betriebsstoffe liefert Informationen zur Prozessqualität.

VERIFIZIERUNG


Analysen auf SPEZIFISCHE Substanzen bestätigen oder widerlegen Verdachtsfälle.

ANLEITUNG ZUR PROBENAHME

Schulungen, Probenahmeprotokolle usw. gewährleisten die Verwendbarkeit der Analysenergebnisse.

INTERPRETATIONS-**SUPPORT**

Kommunikation über substanzspezifische Eigenschaften, statistische Häufigkeiten, bestätigte Spuren von Relevanz, etc.

Das Unsichtbare sichtbar machen

ANALYTISCHE METHODEN -Beschreibung

Eine Methode ist ein geplantes Verfahren zur Erreichung eines speziellen Ziels (wiki)

Geplant: definierte Guidelines mit verifizier- und reproduzierbaren Verfahren

Ziele: Qualifizierung und Quantifizierunng von Zielanalyten

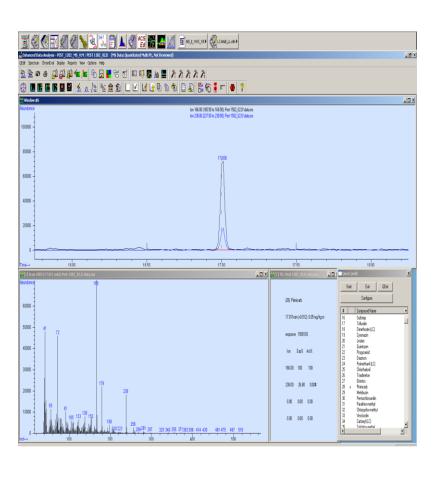
ANALYTISCHE METHODEN - Beschreibung

Einzelschritte solcher Verfahren

PROBENAUFBEREITUNG

- Beschreibung
- Definition
- Schneiden
- (Pooling)
- Homogenisierung

EXTRAKTION


- Lösungsmittelzusatz
- Extraktion (Schütteln)
- Cleanup
- Filtration

DETEKTION VON ANALYTEN

Abhängig vom Zielanalyt Beispiel Pestizide

- Gas-Chromatographie
- Flüssig-Chromatographie
- Tandem Massen-Spectrometry

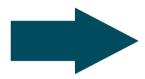
ERGEBNISERSTELLUNG

- Qualifikation
- Quantifizierung
- Verifizierung
- Interpretation

ANALYTISCHE METHODEN - Beschreibung

Die wichtigsten Methoden zur Messung von Bio-Proben

Multi Residue Methode (MRM)


Methode	Zweck	Zielanalyten
QuEChERS	Screening auf 200-900 Substanzen	Pestizide
QuPPe	Screening auf bis zu 30 Substanzen	polare Pestizide
ICP	Screening auf Schwermetalle	Kontaminanten, Pestizide

SingleResidue Methods (SRM)

Methode	Zweck	Zielanalyten
Dithiocarbamates	Messung von Abbauprodukten CS ₂	Pestizide
QAC	Screening auf kationische Tenside	Reinigungs- und Desinfektionsmittel
Sonderanalysen	Für MRM ungeeignete Analyten	z.B. Nikotine, Phenoxycarbon-Säuren

ANALYTISCHE METHODEN - Herausforderungen

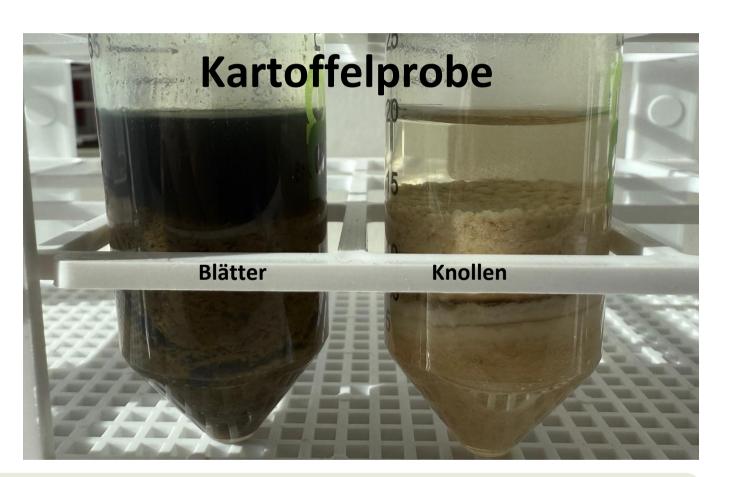
Risiko-basiertes Bio-Monitoring von Betriebsprozessen gemäß VO (EU) 2018/848 macht den Gebrauch standardisierter Target Analyse erforderlich

Screening auf "WAS"?

Die Herausforderungen

- Das analytische Untersuchungsspektrum ist nicht klar definiert
- Gezogene Proben sollen <u>Prozesse</u> anstelle von <u>Produkten</u> qualifizieren
- Positivbefunde können existentielle Konsequenzen haben
- Hierfür wird meist die sehr komplexe Pestizidanalytik herangezogen
- Schon sehr geringe Konzentrationen können Prozesse und Produkte qualifizieren (keine echten Grenzwerte)

ANALYTISCHE METHODEN - Herausforderungen


Multi Residue Methoden (siehe SANTE/11312/2021 vs 2)

QuEChERS Multimethode

- Target Screening Methode
- Anzahl der erfassten Analyten (mind. 226 in Reg. (EU) 2023/731 bis zu 900 in Referenz Laboren)
- Validierung aller Substanz/Matrix Kombinationen
- LOD jedes relevanten Analyten ist 0,01 mg/kg

QuPPe Multimethode

Bedeutsam für polare Analyten Meist auf Kundennachfrage (z.B. Verdacht auf Anwendung mit Glyphosat)

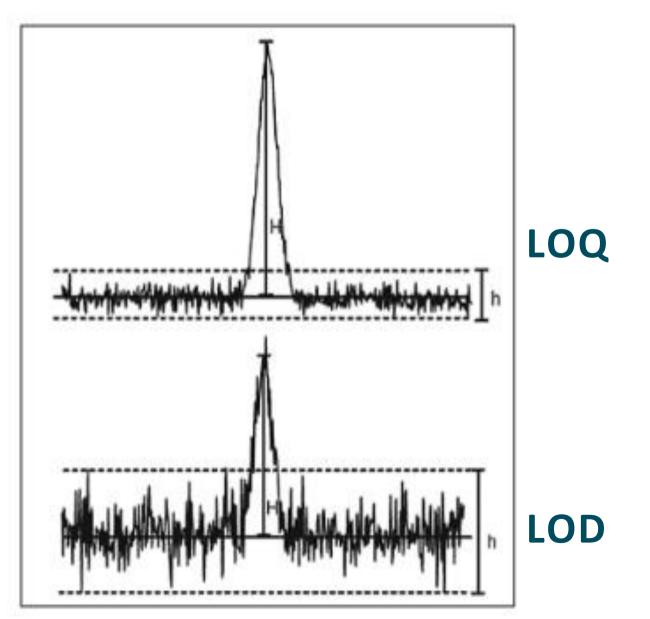
Multi-Methoden sind eigentlich Multiple Methoden!! Es sind 11 Matrix Gruppen für Lebensmittel und 8 für Futtermittel definiert

QuEChERS Multimethode Herausforderung: "Screen soviel wie geht"

Screening bedeutet (bei Obst und Gemüse:

600 Analyten in 380 Matrices

=> 228000 Kombinationen


ANALYTISCHE METHODEN - Herausforderungen

2-Napthtoxyessigsäure	Cyromazin	Folpet	Phorat_Sulfon	
3,5-Dichloranilin	Dazomet	Fonofos	Phorat_Sulfoxid	
3-Decen-2-one	DDAC-C10	Forchlorfenuron	Phosalon	
3-Hydroxycarbofuran	DDAC-C12	Formetanat	Phosmet	
4,4-Dibromobenzophenon	DDAC-C8	Formothion	Phosphamidon	
4-Bromphenylharnstoff	DDD, o,p'-	Fosetyl	Phosphonsäure	
4-CPA	DDD, p,p'-	Fosthiazat	Phoxim	
6-Benzyladenin	DDE, o,p'-	Fuberidazol	Phtalimid	
Abamectin	DDE, p,p'-	Furalaxyl	Picaridin	
Acephat	DDT, o,p'-	Furmecyclox	Picloram	
Acequinocyl	DDT, p,p'-	Genite	Picolinafen	
Acetamiprid	DEET - Diethyltoluamid	Gibberellin Säure	Picoxystrobin	
Acibenzolar-S-Methyl	Deltamethrin	Glyphosat / AMPA	Piperonylbutoxid (PBO)	
Aclonifen	Demeton-S-Methyl	Halfenprox (Brofenprox, Fubfenprox)	Pirimicarb	
Acrinathrin	Demeton-S-Methylsulfon	Haloxyfop_R	Pirimicarb, Desmethylformamido-	
Alachlor	Demeton-S-Methylsulfoxid	Haloxyfop_R_Methyl	Pirimicarb-Desmethyl	
Aldicarb	Desethylatrazin	Heptachlor	Pirimicarb-Desmethyl-F	
Aldicarb Sulfon	Desethylterbuthylazin	Heptachlorepoxid, cis	Pirimiphos-ethyl	
Aldicarb_Sulfoxid	Desisopropylatrazin	Heptachlorepoxid, trans	Pirimiphos-methyl	
Aldrin (HHDN)	Desmedipham	Heptenophos	Prochloraz	
Allethrin	Desmetryn	Hexachlorbenzol (HCB)	Procymidon	
Ametoctradin	Diafenthiuron	Hexachlorcyclohexan (HCH), alpha	Profenofos	
Ametryn	Di-Allat	Hexachlorcyclohexan (HCH), beta	Profluralin	
Amidosulfuron	Diazinon	Hexachlorcyclohexan (HCH), delta	Prohexadion-Calcium	
Aminocarb	Dicamba	Hexachlorcyclohexan (HCH), epsilon	Promecarb	
Aminopyralid	Dichlobenil	Hexaconazol	Prometon	
Amitraz	Dichlofenthion	Hexaflumuron	Prometryn	
Ancymidol	Dichlofluanid	Hexazinon	Propachlor	
Anthraquinon	Dichlorbenzamid	Hexythiazox	Propamocarb	
Atrazin	Dichlorprop	Imazalil	Propanil	
Atrazin-Desisopropyl	Dichlorvos	Imazaquin	Propaquizafop	
Azaconazol	Diclobutrazol	Imibenconazol	Propargit	
Azadirachtin	Dicloran	Imidacloprid	Propazin	
Azametiphos	Dicofol	Indoxacarb	Propetamphos	
Azinphos-ethyl	Dicrotophos	Iodocarb(IPBC)	Propham	
Azinphos-methyl	Dieldrin	Iodofenphos	Propiconazol	
Aziprotryn	Dienochlor	loxynil	Propoxur	
Azoxystrobin	Diethofencarb	Iprobenfos	Propyzamid	
BAC 10	Difenoconazol II	Iprodion	Proquinazid	
BAC 12	Difenoxuron	Iprovalicarb	Prosulfocarb	
BAC 14	Diflubenzuron	Isazofos	Prothioconazol	
BAC 16	Diflufenican	Isocarbophos	Prothioconazol_Desthio	
BAC 18	Dimethenamid	Isodrin	Prothiofos	
BAC 8	Dimethoat	Isofenphos	Pymetrozin	
Benalaxyl	Dimethomorph II	Isofenphos-methyl	Pyraclostrobin	
Bendiocarb	Dimoxystrobin	Isofenphos-Oxon	Pyraflufen-ethyl	
Benfluralin	Diniconazol	Isoprocarb	Pyrazophos	
Benfuracarb	Dinocap	Isopropalin	Pyrethrin I	
Benomyl	Dinoseb	Isoprothiolan	Pyrethrin II	
Bensufuron_Methyl	Dioxacarb	Isoproturon	Pyridaben	
Bentazon	Diphenamid	Isopyrazam	Pyridalyl	
Benthiavalicarb_Isopropyl	Diphenylamin	Isoxaben	Pyridaphenthion	
Bifenazat	Dipropetryn	Isoxaflutol	Pyridat	

ANALYTISCHE METHODEN - Herausforderungen

QuEChERS Multimethode

Herausforderung: Level of Detection (LOD), Level of Quantification (LOQ)

Signal-to-noise ratio of 10:1 (top) indicating LOD and 3:1 (bottom) indicating LOQ

Quantifizierung ist erst ab einem 3fach höheren Respons gegenüber dem LOD sicher

Frage:

Was sollen/müssen wir den Kunden berichten?

(=>level of reporting LOR)

ANALYTISCHE METHODEN - Herausforderungen

QuEChERS Multimethode

Herausforderung: Natürlich vorkommende Konjugationen

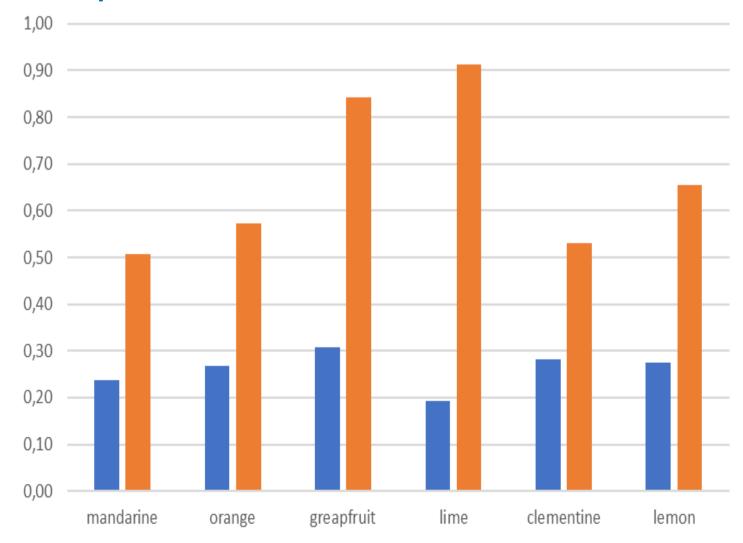
Exemple: 2,4 D Ester

methyl~	2-ethylhexyl~	polypropoxybutyl~
ethyl~	nonyl~	tripropylene glycol~
propyl~	ethoxyethoxyethyl~	polypropylene glycol~
isopropyl~	ethoxyethoxypropyl~	propylene glycol butyl ether~
butyl~	butoxypropyl~	propylene glycol isobutyl ether~
isobutyl~	2-butoxyisopropyl~	chlorocrotyl~
octyl~	butoxy ethoxy propyl~	tetrahydrofurfuryl~.
2-octyl~	butoxy polyethoxypropyl~	

Wirkstoff-Formulierungen unterscheiden sich häufig durch die unterschiedlichen Substanz-"Zustände"

Achtung:

Nur wenige Labore bieten Hydrolyse in der Routine mit an => Sonderbeauftragung z.B. bei Zitrus


Beispiele von relevanten 2,4 D estern (EURLSRM Analytical Observation Report)

ANALYTISCHE METHODEN - Herausforderungen

QuEChERS Multimethode

Herausforderung: Natürlich vorkommende Konjugationen

Beispiel: 2,4 D Ester

Konzentrationen von 2,4-Dichlorophenoxy-Essigsäure [in mg/kg] in Zitrus ExtraKten vor (blau) und nach (orange) Hydrolyse

Frage:

Werden diese Pestizide in der Routine mittels Hydrolyse anaysiert?

z.B. 2,4D, Dichlorprop, Fluaxifop, Fluroxipyr, MCPA, Pyridafol, Ortho-Phenylphenol....

ANALYTISCHE METHODEN - Herausforderungen

Dithiocarbamate

Herausforderung: Messung von Abbauprodukten

Dithiocarbamate

Dazomet, Disulphiram, Ferbam, Mancozeb, Maneb, Metam, Metiram, Methylmetiram, Nabam, Propineb, Thiram, Ziram

Analytisches Prinzip

Analyse anhand des gemeinsamen Abbauproduktes Schwefelkohlenstoff (CS₂)

Macht es schwierig, mögliche Anwendungsszenarien nachzuweisen

Proben, die Schwefelverbindungen enthalten (z. B. Glucosinolate in Kohl), wandeln sich während der Extraktion in CS₂ um und täuschen das Vorhandensein von Dithiocarbamaten vor.

ERGEBNISINTERPRETATION- Interface Kunde - Labor

Unterschiedliche Ansätze:

Labor analysiert Bioproben und liefert zuverlässige <u>quantitative</u> Ergebnisse (LOQ)

Keine Interpretation gegenüber dem Kunden

Labor analysiert Bioproben und liefert <u>zusätzlich</u> zuverlässige qualitative Ergebnisse (LOR)

Keine Interpretation gegenüber dem Kunden

Labor analysiert Bioproben und leitet weitergehende Interpretationen weiter Weitere Kundeninformationen auf Fall- Basis

ERGEBNISINTERPRETATION- Interface Kunde - Labor

Welche "Zusatzinformationen" können helfen?

Kontamination oder beabsichtigte Applikation? (Art. 28 VO (EU) 2018/848)

Report

Projekt: Rückstandsuntersuchung

.,			
Probennummer:	S25-090199-01		
Artikel:	Bio Heidelbeeren		
Bezeichnung der Probe:	250915 Bio Kulturheidelbeeren		
Beschreibung zur Probe:	Heidelbeeren, 1,04 kg in PE-Beutel		
Probeneingang:	08.09.2025		
Prüfzeitraum:	08.09.2025 - 15.09.2025		
Probenahmedatum:	07.09.2025		
Fruitmonitoring-ID:	FM00000202509000982-001		

Höchstmengen-/ARfD-Auswertung

Heidelbeeren,Bio

Parameter	Gehalt [mg/kg]	RHG [mg/kg]	AS RHG [%]	Aufnahme [mg/kg KG]	ARfD [mg/kg KG]	AS ARfD [%]	Anzahl WS
Propamocarb (Summe aus Propamocarb und seinen Salzen, ausgedrückt als Propamocarb)	0,010	0,01	100,0	0,00006	1	0,0	1
		Summe	100,0			0,0	1

"Zusatzinformation"

Substanz	Êrgebnis (mg/kg)		
Propamocarb	0,010		
Chlorthalonil	0,004		
Difenoconazol	0,003	Nicht berichtet, jedoch plausibel für Heidelbeerproduktion	
Azoxystrobin	0,002	•	
Ametoctradin	0,001	Chlorthalonil in EU nicht zugeassen	

AUSWAHLKRITERIEN Laborservice

Mindest-Anforderungen für Labore, welche auf Basis Artikel 28 der VO (EU) 2018/848 beauftragt werden:

- Akkreditierung nach ISO 17025
- Art der Ergebnisdarstellung Öfftl. Bestellung als Labor nach Reg. (EU) 2017/625 Erfolgreiche Teilnahme an Ringversuchen

- Wirkstoffliste mit ausgewiesenem LOQ in QuEChERS Wirkstoffliste mit ausgewiesenem LOQ in QuEChERS

Jedes Labor muss diese Anforderungen erfüllen

ABER

Es gibt unterschiedliche "Erfüllungsgrade"

AUSWAHLKRITERIEN Laborservice

"Weiche" Anforderungen an Labore, welche auf Basis Artikel 28 der VO (EU) 2018/848 beauftragt werden:

Erreichbarkeit

Persönliche Kompetenz

Flexibilität

- Einfache Probveneingansverfahren
- Bereitstellung von Leitfäden und Support
- •Klare Bearbeitungszeiten
- Bio-Beauftragter im Labor
- •Teilnahme an Kompetenzmaßnahmen
- •Flexibilisierte akkreditierte Methoden
- Saisonale Erweiterungskapazitäten
- Adaptive Methoden für unterschiedliche Matrices
- Kundenoriente Berichtsformate

Vielen Dank